Udemy - Taming Big Data with Apache Spark and Python - Hands On!

Udemy - Taming Big Data with Apache Spark and Python - Hands On!

zerotomastery
Apr 29, 2025

What you'll learn

Use DataFrames and Structured Streaming in Spark 3

Use the MLLib machine learning library to answer common data mining questions

Understand how Spark Streaming lets your process continuous streams of data in real time

Frame big data analysis problems as Spark problems

Use Amazon's Elastic MapReduce service to run your job on a cluster with Hadoop YARN

Install and run Apache Spark on a desktop computer or on a cluster

Use Spark's Resilient Distributed Datasets to process and analyze large data sets across many CPU's

Implement iterative algorithms such as breadth-first-search using Spark

Understand how Spark SQL lets you work with structured data

Tune and troubleshoot large jobs running on a cluster

Share information between nodes on a Spark cluster using broadcast variables and accumulators

Understand how the GraphX library helps with network analysis problems

Requirements

Access to a personal computer. This course uses Windows, but the sample code will work fine on Linux as well.

Some prior programming or scripting experience. Python experience will help a lot, but you can pick it up as we go.

Description

New! Updated for Spark 3.5 and Spark 4's newest features

“Big data" analysis is a hot and highly valuable skill – and this course will teach you the hottest technology in big data: Apache Spark and specifically PySpark. Employers including Amazon, EBay, NASA JPL, and Yahoo all use Spark to quickly extract meaning from massive data sets across a fault-tolerant Hadoop cluster. You'll learn those same techniques, using your own Windows system right at home. It's easier than you might think.

Learn and master the art of framing data analysis problems as Spark problems through over 20 hands-on examples, and then scale them up to run on cloud computing services in this course. You'll be learning from an ex-engineer and senior manager from Amazon and IMDb.

Learn the concepts of Spark's DataFrames and Resilient Distributed Datastores

Develop and run Spark jobs quickly using Python and pyspark

Translate complex analysis problems into iterative or multi-stage Spark scripts

Scale up to larger data sets using Amazon's Elastic MapReduce service

Understand how Hadoop YARN distributes Spark across computing clusters

Learn about other Spark technologies, like Spark SQL, Spark Streaming, and GraphX

Practice using Spark's latest features, including Pandas-On-Spark, Spark Connect, and User-Defined Table Functions (UDTFs).

By the end of this course, you'll be running code that analyzes gigabytes worth of information – in the cloud – in a matter of minutes.

This course uses the familiar Python programming language; if you'd rather use Scala to get the best performance out of Spark, see my "Apache Spark with Scala - Hands On with Big Data" course instead.

We'll have some fun along the way. You'll get warmed up with some simple examples of using Spark to analyze movie ratings data and text in a book. Once you've got the basics under your belt, we'll move to some more complex and interesting tasks. We'll use a million movie ratings to find movies that are similar to each other, and you might even discover some new movies you might like in the process! We'll analyze a social graph of superheroes, and learn who the most “popular" superhero is – and develop a system to find “degrees of separation" between superheroes. Are all Marvel superheroes within a few degrees of being connected to The Incredible Hulk? You'll find the answer.

This course is very hands-on; you'll spend most of your time following along with the instructor as we write, analyze, and run real code together – both on your own system, and in the cloud using Amazon's Elastic MapReduce service. 8 hours of video content is included, with over 40 real examples of increasing complexity you can build, run and study yourself. Move through them at your own pace, on your own schedule. The course wraps up with an overview of other Spark-based technologies, including Spark SQL, Spark Structured Streaming, and GraphX.

Wrangling big data with Apache Spark is an important skill in today's technical world. Enroll now!

" I studied "Taming Big Data with Apache Spark and Python" with Frank Kane, and helped me build a great platform for Big Data as a Service for my company. I recommend the course! " - Cleuton Sampaio De Melo Jr.

"Awesome course on running big data jobs on Apache Spark using Python. As usual, Frank explains things very clearly and points out various items to watch out for and make sure you have set up correctly. There are many ways that a Spark job can fail or have issues, such as running out of memory, and Frank does a great job of pointing many of those out." -James Gershfiel

"Easy steps so even a beginner should be able to install Spark and run the examples right away. Good examples and fun to do. Giving a nice set of useful examples as a toolbox." - HansEV

"Great course to get you going with Apache Spark and Python! Frank’s delivery is very thorough yet unpretentious; his explanations for each new concept that he introduces is down to earth and easy to follow." - Amiri McCain

Who this course is for:

People with some software development background who want to learn the hottest technology in big data analysis will want to check this out. This course focuses on Spark from a software development standpoint; we introduce some machine learning and data mining concepts along the way, but that's not the focus. If you want to learn how to use Spark to carve up huge datasets and extract meaning from them, then this course is for you.

If you've never written a computer program or a script before, this course isn't for you - yet. I suggest starting with a Python course first, if programming is new to you.

If your software development job involves, or will involve, processing large amounts of data, you need to know about Spark.

If you're training for a new career in data science or big data, Spark is an important part of it.

如何获取课程

获取完整课程内容,开始你的学习之旅

¥49
一次性购买,永久有效

发货时间

付款后 24小时内 发货

发货方式

• 百度云盘链接

• 夸克云盘链接

如有问题,请联系客服

微信客服二维码

微信客服

扫码添加微信

Telegram二维码

Telegram客服

扫码添加Telegram

你可能也喜欢

Udemy - The Complete Full-Stack Web Development Bootcamp
udemyhtml/cssjavascriptbootstrapreact

Udemy - The Complete Full-Stack Web Development Bootcamp

Become a Full-Stack Web Developer with just ONE course. HTML, CSS, Javascript, Node, React, PostgreSQL, Web3 and DApps

Web Development
查看详情
CodeFast - Learn to code in weeks, not months
html/cssjavascripttailwindcssreactnextjs

CodeFast - Learn to code in weeks, not months

Everything you need to build your SaaS or any online business—even as a complete beginner.

Web Development
查看详情
Udemy - 100 Days Of Code - 2025 Web Development Bootcamp
udemyacademindhtml/cssjavascriptnodejs

Udemy - 100 Days Of Code - 2025 Web Development Bootcamp

Learn web development from A to Z in 100 days (or at your own pace) - from "basic" to "advanced", it's all included!

Web Development
查看详情